
1

Storage Client API Specification

DRAFT
Please send comments to:

{annc@isi.edu,foster@mcs.anl.gov,carl@isi.edu,salisbur@mcs.anl.gov,tuecke@mcs.anl.gov}

Abstract

We describe an application programmer interface (API) designed to support high-
performance remote access to a variety of storage systems. This API is intended for use
within distributed systems that support the integrated management and analysis of large
(petabyte-scale) distributed data collections: what we term Data Grids. The definition of
this API simplifies the implementation of Data Grid applications by providing a uniform
interface to the diverse storage system types that may be encountered in Data Grid
environments. The interface is defined so that implementations can exploit sophisticated
techniques to achieve high performance, such as network striping, parallel I/O, and
network protocol tuning. Hence, in principle, applications need not sacrifice performance
for portability when using this API to move data between storage systems and either
client applications or other storage systems.

2

Table of Contents

Abstract .. 1

1 Background and Terminology... 3

1.1 Data Grid Components ... 3

1.2 Data Grid Operations.. 4

2 API Design ... 4

2.1 Design Goals.. 4

2.2 Summary of Storage Client API Operations.. 5

3 API Specification.. 9

3.1 Manipulating Storage Systems ... 9

3.2 Read and Write Operations on File Instances.. 13

3.3 Storage-to-Storage Transfers .. 14

3.4 Flush Operations .. 16

3.5 Manipulating Attribute Sets.. 16

3.6 Manipulating File Instance and Storage System Properties 20

3

1 Background and Terminology

The Storage Client API (SC-API) that we define here is just one component of a larger
Data Grid architecture. We provide a detailed description of the overall architecture of
the grid elsewhere. In the subsection that follows, we describe some of the key
components of the architecture, focusing on terminology.

The bulk of this document concerns the description of the SC-API. This API is
concerned exclusively with data access and data movement. Programmers will typically
use functions from the SC-API as well as from other Data Grid components (e.g.,
mechanisms for access to metadata catalogs, security, and computing resources) to
implement a particular application.

1.1 Data Grid Components

A logical file is an entity that has a globally unique name and that may also have
associated with it metadata and one or more physical file instances. A file instance is just
an uninterpreted sequence of bytes which is located in a storage system. We propose to
use X.500 distinguished names for logical files and Uniform Resource Locators (URLs)
to name file instances. Metadata is recorded in a metadata catalog. File instances are
recorded in a replica catalog which maps a logical file name to one or more file instance
names. Information about an instance (e.g., the speed of the storage system on which it is
stored) is stored in an instance catalog, which maps file instance names to such instance
properties. Logical files may be organized in collections. A collection, like a logical file,
has a unique name and associated metadata, which in this case includes the names of the
collection’s constituent logical files.

In this context, a storage system is an entity that responds to requests to read and/or
write named file instances. Note that the term “storage system” as used here denotes a
logical construct and need not map directly to low-level storage. For example, a
distributed file system that manages files distributed over multiple storage devices or
even sites can serve as a storage system, as can a Storage Resource Broker (SRB) that
serves requests by mapping to multiple storage systems of different types. The “names”
supported by a particular storage system are also logical constructs, with their meaning
being determined solely by the storage system. In many storage systems, a “name” will
be a hierarchical directory path, but in some systems (e.g., SRB), it may be a set of
attribute-value pairs that the storage system maps internally to an actual file instance.

For conciseness we will use the term file to denote what might otherwise be called a
“data item” or “entity”. This choice of terminology is not intended to imply that Data
Grid operations deal only with conventional file systems. On the contrary, a Data Grid
implementation might use a system such as SRB to access “file instances” stored within a
database management system.

The term cache is often used in discussions of Data Grid-like systems, but with widely
varying meanings. To reduce confusion, we avoid the use of this term altogether here.
Instead, we use the two terms replication and buffering, as follows:

4

• Replication denotes the creation of a copy of an entire file instance and the
creation of an entry in the replica catalog. In our architecture, replication can be
performed under user control or by a library or agent implementing an instance
management strategy.

• Buffering denotes the placement of portions of a file instance on faster storage
devices. In our architecture, we assume that buffering may be performed within
the storage client or storage system implementations but is not under direct user
control.

The Data Grid architecture does not support user-level management of copies of
partial files. While experience may eventually motivate the introduction of such support,
there are significant advantages in terms of simplicity to dealing with entire files.

1.2 Data Grid Operations

The Data Grid architecture defines a variety of operations on the components just
listed, including publication (creation of logical files and collections), instance
management (e.g., replication), query mapping (mapping a user query into one or more
logical files), instance selection (selecting the appropriate instance of a logical file), data
access (application-level read and write operations on all or part of a file instance), and
data movement (so-called storage-to-storage transfers or third-party transfers of a file
instance from one storage system to another).

2 API Design

2.1 Design Goals

We note first the principal goals that have motivated the design of the SC-API.

Hide storage system heterogeneity. We wish to hide heterogeneity in storage system
architecture as much as possible, by providing a single client-side API that can be used
for diverse storage systems, including:

• standard file systems, such as NFS and DFS;

• tertiary storage management systems, such as HPSS;

• servers accessible via Internet protocols, such as HTTP, FTP, and WebDAV; and

• network “caches,” such as DPSS.

Provide rich functionality. We desire an API that supports a variety of access methods
for remote file instances, including read and write operations on subsets of file instances,
read operations that involve the execution of “filters,” and third-party transfers in which a
file instance is copied from one remote storage system to another. That is, we want more
than a least-common denominator set of access methods.

Support high-performance implementations. We wish to allow an implementation to
exploit specialized techniques designed to enhance performance and provide performance

5

guarantees: e.g., network striping, parallel I/O techniques, network protocol tuning,
quality of service within storage systems and networks.

Support application-level guidance. We also wish to support application-level
performance tuning, via either the provision of hints that can guide lower-level parameter
selection or the direct discovery of, and then setting of, low-level parameters.

Leverage Grid infrastructure. We wish to leverage low-level Grid infrastructure such
as authentication and instrumentation wherever possible.

2.2 Summary of Storage Client API Operations

The SC-API defines functions for listing the contents of a storage system, for deleting
file instances, for opening and closing file instances, for reading and writing contents of
file instances, for performing storage-to-storage transfers, and for accessing and setting
properties associated with file instances and storage systems. Functions are also provided
for manipulating the attribute sets that can be passed to SC-API functions to customize
their behavior. In the remainder of this section, we provide an overview of the principal
functions of the SC-API. In Section 3, we provide complete function prototypes and
definitions for each SC-API operation.

One important property of a storage system is its “scope,” that is, the set of machines
from which SC-API functions can be used to access it. Many SC-API-enabled storage
systems will have global scope, meaning that they can be accessed from any machine in
the Internet. However, SC-API functions can also be used to provide access to storage
systems that are “local” to a subnet (e.g., a site’s NFS file system) or even a single
processor (e.g., /tmp). Regardless of where an SC-API function is called from, it is
performed on behalf of a specific user, and is subject to local policy constraints (e.g.,
access control) within the storage system (with identity established via the Grid Security
Infrastructure) on which the operation is performed.

The techniques used to implement SC-API functions will depend on both the
capabilities of the underlying storage system and on the sophistication of the
implementer. For example:

• If a storage system supports appropriate remote partial file read and write
operations, then a straightforward implementation approach would translate each
SC-API call into the corresponding remote storage operation.

• In the same situation, a more sophisticated implementation might buffer selected
file instance contents or property values near the client so as to reduce
communication requirements. (We specify below when changes must be
committed to the storage system.)

• In the case of a storage system to which remote access is provided only via FTP,
an implementation might copy the entire file to an intermediate location on open,
then perform read and write operations on that copy.

The following table summarizes the SC-API

6

Manipulating Storage Systems SC-API function
List grid_storage_search

grid_storage_register_search

Delete grid_storage_delete

grid_storage_register_delete

Open grid_storage_open

grid_storage_register_open

Close grid_storage_close

grid_storage_register_close

Data Access

Read grid_storage_read

grid_storage_register_read

Write grid_storage_write

grid_storage_register_write

Storage to Storage Transfers

Transfer data grid_storage_transfer

grid_storage_register_transfer

Manipulating Attribute Sets

Initialize grid_storage_init_attribute_set

Copy grid_storage_copy_attribute_set

Destroy grid_storage_destroy_attribute_
set

Add grid_storage_add_attribute

Remove grid_storage_remove_attribute

Set grid_storage_set_attribute

Get grid_storage_get_attribute

Manipulating Properties

List grid_storage_list_properties

7

2.2.1 Manipulating Storage Systems

In the rest of this section, we describe SC-API functionality in more detail. We first
introduce the functions for manipulating storage systems. These functions include listing
file instances, deleting file instances, and opening and closing file instances.

These operations use Uniform Resource Locators (URLs) to refer to storage systems
and file instances. An SC-API URL is, in essence, a concatenation of four components:
a protocol name, system name, port number, and name. This convention allows the SC-
API to suport the http, ftp, and certain experimental protocols. The server name and
(optional) port number provide the address of the storage system to which requests
should be directed.The name is an arbitrary string used by the storage system to identify
the file instance. For example:

http://myserver.mcs.anl.gov:2000/myfile1

http://myserver.mcs.anl.gov:2000/mydirectory/myfile2

x-srb://srb.sdsc.edu:3000/mycollection&type=grid&name=f

The first two examples refer to file instances located within a storage system with
server http://myserver.mcs.anl.gov:2000. The first instance has local name
myfile1 and the second the hierarchical name mydirectory/myfile2. In the third
example, we are dealing with a SRB system (with server name srb.sdsc.edu:3000)
and here the local “name” is a collection name and a set of name-value pairs.

The SC-API provides a function that lists all file instances within a storage system that
match a specified search expression. Depending on the nature of the storage system, this
function may support directory operations (e.g. “list all file instances at a specified point
in the directory”). The API also provides a function that deletes named file instances
within a storage system.

The SC-API open operation maps from a file instance name (a URL) to a
representation that permits direct access to the physical storage: what we call a file
instance handle. The contents of a handle depend on the underlying storage system.
Within a shared file system, a handle might be a file descriptor. In a distributed
environment, a handle could be a proxy through which remote read and write requests are
forwarded to the remote storage systems, or the handle could be a pointer to a locally
buffered copy of the entire file instance. The file instance handle is used for subsequent
read and write operations.

If an open operation is performed on a file instance that does not yet exist, the Storage
Client API will attempt to create a file instance with the supplied name on the underlying
storage system. If this create on open operation is successful, a file instance handle is
returned.

Finally, the SC-API close operation removes the mapping between the file instance
name (URL) and a file instance handle. Changes to file instance properties (such as size
and modify times) are not guaranteed to be correct until the close operation completes.

8

2.2.2 Read and Write Operations

The SC-API’s read and write functions provide read and write access to a previously
opened file instance. These functions specify a file instance, a starting position within the
file instance, a transfer size, and a buffer address.

The behavior that results if multiple readers and writers operate on the same file at the
same time is not specified but depends on the semantics of the underlying storage system.
That is, we do not require an SC-API implementation to provide stronger coherency
guarantees than the underlying storage system. (However, we may decide to associate a
property with a storage system that would allow a user to discover what guarantees are
provided.)

2.2.3 Storage to Storage Transfers

The SC-API supports storage-to-storage transfers, that is, the direct movement of a file
instance from one storage system to another without an intermediate (and often
performance limiting) transfer through an application. The SC-API functions in question
instruct one storage system to initiate a direct transfer with a second storage system. The
initiating system (which may act as either the source or destination for the transfer) then
performs the actual transfer via standard SC-API open, close, read, and write calls.

2.2.4 Manipulating Attribute Sets

Because a primary goal of the Data Grid architecture is to support application-level
performance tuning, all SC-API storage functions take as an argument an attribute set,
which the user can employ to pass to the function various parameters, hints, and
directives designed to improve data access performance. SC-API functions are provided
for creating, modifying, and examining attribute sets. In the prototype implementation,
these functions are not thread-safe.

2.2.5 Properties

The SC-API also includes a set of functions for manipulating file instance and storage
system properties. File instance properties describe individual file instances and include
such characteristics as size, owner, access permissions, and last modification date for the
file instance. Storage system properties describe the storage system and may include the
type of storage devices, the default block size, data layout information such as data
striping parameters, and a list of interfaces or protocols supported by the storage system,
such as FTP, parallel FTP, or MPI/IO. SC-API functions are provided for creating,
setting, deleting and listing properties.

Note that the Storage Client API is not concerned with data description properties,
that is, with properties containing semantic information about file instances. A separate
metadata access API is used to modify and query these properties.

9

3 API Specification

We now provide a detailed specification of the various SC-API functions. The various
functions have a number of features in common:

• All storage functions take an attribute set as an argument. As we explain below,
this attribute set is used to pass various parameters, hints and directives used to
customize the behavior of the underlying implementation and/or storage system.

• Each function has an asynchronous equivalent if there is any possibility of it
blocking. Hence, a user can always write non-blocking code. An asynchronous
version of any call always returns immediately. Its argument list extends the
argument list of the synchronous version with the callback function that is to be
invoked after the operation completes, a pointer to any arguments for that callback
function, and an optional pointer to a callback handle. The callback handle can be
used to cancel an outstanding grid storage operation.

• All functions use the Grid error handling API, which is defined in a separate
document. This means that their return value is a handle (of type
globus_result_t) which can either be ignored or used to access an error object.
A handle value of GLOBUS_SUCCESS indicates success; other values indicate
errors, in which case the application can use the handle to retrieve an error object
that contains information about the type of error that occurred.

3.1 Manipulating Storage Systems

3.1.1 List File Instances in a Storage System

globus_result_t

grid_storage_search(

grid_storage_url_t * storage_url,

char * search_expression,

grid_storage_url_t ** url_array,

grid_storage_attribute_t * attributes)

globus_result_t

grid_storage_register_search(

grid_storage_url_t * storage_url,

char * search_expression,

grid_storage_url_t ** url_array,

grid_storage_attribute_t * attributes,

grid_storage_search_callback_t

callback_fn,

void * callback_args,

grid_storage_callback_handle_t *

callback_handle)

10

Places in url_array a NULL terminated sequence of URLs for all file instances in
the storage system named by storage_url that match the supplied
search_expression.

3.1.2 Delete a File Instance

globus_result_t

grid_storage_delete(

grid_storage_url_t * storage_url,

grid_storage_attribute_t * attributes)

globus_result_t

grid_storage_register_delete(

grid_storage_url_t * storage_url,

grid_storage_attribute_t * attributes,

grid_storage_callback_t callback_fn,

void * callback_args,

grid_storage_callback_handle_t *

callback_handle)

Instructs the underlying storage system to delete the file instance named by
storage_url. Any operations on active handles referring to this URL may fail after the
URL is deleted.

The original text for this operation was:

Removes mapping between URL, handle, and physical storage. If there are no other
mappings to this physical storage location, instruct the underlying storage system to
delete the file instance.

The “mapping” concept is not defined in this document. The behavior of using this
API is undefined if multiple concurrent accesses to the URL are occurring. A handle may
or may not become invalid immediately upon file deletion. For example, an HTTP server
will not know that a client has an open handle to an URL, because each URL GET or
PUT operation is stateless.

3.1.3 Open a File Instance

globus_result_t

grid_storage_open(

grid_storage_url_t * item_url,

grid_storage_handle_t * item_handle,

grid_storage_attribute_t * attributes)

globus_result_t

11

grid_storage_register_open(

grid_storage_url_t * item_url,

grid_storage_handle_t * item_handle,

grid_storage_attribute_t * attributes,

grid_storage_callback_t callback_fn,

void * callback_args)

Opens the file instance named by item_url and returns as item_handle a handle
that can be used to perform subsequent read and write operations on that file instance.
This handle is not required to be valid outside the scope of the requesting process, hence
it cannot be passed to, or inherited by, other processes.

The attributes supplied when making this call are used to set properties of the
opened file instance, such as the open mode (read-only, read-write, etc), and whether to
create the URL if it does not exist yet.

In the prototype implementation, the following attributes are defined for the open
calls:

GRID_STORAGE_ATTRIBUTE_OPEN_FLAGS. The value of this attribute should
be a value string representation of the integer value passed as the second argument to the
POSIX open() call.

GRID_STORAGE_ATTRIBUTE_CREATE_MODE. The value of this attribute
should be a string representation of the integer value passed as the third argument to the
POSIX open() call.

The original description for this API function contained a statement to the effect that a
file instance would be created on open, if it did not exist. In the prototype
implementation, file instance creation will only happen if the
GRID_STORAGE_ATTRIBUTE_OPEN_FLAGS attribute value is the logical OR of
O_CREAT.

The “create on open” operation does not modify metadata or replica catalogs, for
example to record a mapping between a logical file name (URN) and the name (URL) of
the newly created file instance. This mapping must be established separately by using the
metadata and replica manager APIs.

Q: How to deal with DPSS, which requires specific number of bytes for create operation?

We need to think further about access control issues, as a user creating a file will want to
be able to control who can access it.

Errors that can occur during the open operation include the following:

• Request Errors (Client may change request and retry):

• Authentication of client fails

12

• Authorization of client fails (not allowed to open file instance in
specified mode)

• File instance unknown: file not on storage system

• Storage system unknown: can’t contact storage system

• Communication Failures:

• Network or storage system unreachable

• Protocol mismatch

• Protocol violation

• Transfer Aborted

• By user

• By remote storage system

• Due to internal error

3.1.4 Close a File Handle

globus_result_t

grid_storage_close(

grid_storage_handle_t * item_handle,

grid_storage_attribute_t * attributes)

globus_result_t

grid_storage_register_close(

grid_storage_handle_t * item_handle,

grid_storage_attribute_t * attributes,

grid_storage_callback_t callback_fn,

void * callback_args)

Close the file instance specified by the supplied item_handle. Changes to file
instance properties are not guaranteed to be correct until the file instance handle is closed.
For example, as clients write to an open file instance, its size property changes to reflect
these writes. Properties such as size may change while the file instance is open, but they
are not guaranteed to be correct until the file instance is closed.

In the prototype implementation, the properties of an URL are read-only to the
application. I’m not sure if the statement above this box has any meaning right now.

13

Is there a situation where one would wish to close a file instance, without having access
to the handle? For example, what if a program crashes and we’ve lost the handle?

3.2 Read and Write Operations on File Instances

3.2.1 Read from a File Instance

globus_result_t

grid_storage_read(

grid_storage_handle_t* item_handle,

unsigned char * buffer,

size_t offset,

size_t bufsize,

grid_storage_attribute_t * attributes)

globus_result_t

grid_storage_register_read(

grid_storage_handle_t* item_handle,

unsigned char * buffer,

size_t offset,

size_t bufsize,

grid_storage_attribute_t * attributes,

grid_storage_callback_t callback_fn,

void * callback_args)

Synchronous read from a file instance handle. Unlike standard UNIX read operations,
storage system read calls do not assume a file pointer. This reduces the amount of state
the server and client must maintain. Instead, each read call specifies an offset within the
file instance and the size of the buffer that will hold read data. The attributes data
structure can be used to pass extensible arguments or hints to the storage system, such as
block size. Eventually, we expect to also allow the set of valid read attributes to include
a filter to run on the data. Attributes can also be used to specify aggregate read calls.

In addition to the errors specified for the open operation, the following errors can
occur on read operations:

• Out of Range: Offset and/or size require read past end of file instance

3.2.2 Write to a File Instance

globus_result_t

grid_storage_write(

grid_storage_handle_t* item_handle,

unsigned char * buffer,

14

size_t offset,

size_t bufsize,

grid_storage_attribute_t * attributes)

globus_result_t

grid_storage_register_write(

grid_storage_handle_t * item_handle,

unsigned char * buffer,

size_t offset,

size_t bufsize,

grid_storage_attribute_t * attributes,

grid_storage_callback_t callback,

void * user_arg)

As for read, the write call does not assume a file instance pointer, but instead specifies
the position within the file instance and the size of the write operation.

The attributes data structure holds extensible arguments or hints to the storage system,
such as block size.

Side effects of the write operation include changing the size and modify properties of
the file instance. Although these changes may take place while the logical file is open,
the properties are not guaranteed to be correct until the file instance handle is closed.
This is a departure from standard UNIX semantics, which requires size attributes to be
updated as write operations complete.

3.3 Storage-to-Storage Transfers

The functions described above (e.g. open, read, write, etc) allow an application to
access subsets of a file instance on a particular storage system. We additionally need the
ability to transfer entire file instances efficiently from one storage system to another.

An application can perform such a transfer simply by using the read, write, and other
calls defined above. However, this approach may yield poor performance, as all data is
transferred through the application.

Instead, it is often preferable to perform a so-called “storage-to-storage transfer” in
which two storage systems transfer data directly between them. Such storage to storage
transfer has several potential performance advantages. It does not require all data to pass
through a single client, which can be a bottleneck. Also, if a storage system is actually
composed of multiple underlying devices (e.g., multiple disk and/or tape drives), the
transfer can be performed by (or close to) the underlying devices, thus avoiding
intermediate copies, transfers, and/or layers of software.

15

3.3.1 Storage-to-Storage Transfer

globus_result_t

grid_storage_transfer (

 grid_storage_url_t * source_url,

 grid_storage_url_t * destination_url,

 grid_storage_attribute_t * attributes)

globus_result_t

grid_storage_register_transfer (

grid_storage_url_t * source_url,

 grid_storage_url_t * destination_url,

 grid_storage_attribute_t * attributes,

 grid_storage_callback_t callback_fn,

void * callback_args)

Perform a storage-to-storage transfer of the file instance specified by source_url to
the file instance specified by destination_url, creating the destination file if it does
not already exist. An implementation may choose to perform the transfer as a push from
the source storage system, a pull from the destination storage system, or via a series of
read and write operations from the client or some intermediate location, depending on the
properties of the various resources involved. (See implementation notes below.) The
user may use attributes to express a preference for one implementation approach or
another.

3.3.2 Storage-to-Storage Implementation Approaches

The storage-to-storage functions defined here do not specify a particular
implementation approach; as noted in the function description, an implementation can
(and should) choose between one of several alternative strategies, depending on the
capabilities of the source and destination storage systems (and perhaps guided by user-
supplied attributes). Obvious strategies to consider include the following:

1. We can initiate a “push” of the file instance from the source storage system to the
destination storage system. This strategy requires the ability to initiate the “push”
operation at the source storage system, which may or may not be possible.

2. We can initiate a “pull” of the file instance at the destination storage system, from the
source storage system. This strategy requires the ability to initiate the “pull”
operation at the destination storage system, which may or may not be possible.

3. We can perform the transfer via a series of SC-API read and write operations within
the client. This strategy is always possible but, as noted above, can have performance
problems.

16

4. We can perform the transfer via a series of SC-API read and write operations at some
intermediate location. This strategy may be useful when strategies (1) and (2) are not
possible, and strategy (3) is too slow due to poor client performance.

Strategies (1) and (2) require that the two storage systems speak a common protocol.
This requirement can be satisfied in two different ways:

1. We can define a single common transfer protocol that will be used by all storage
systems. This protocol may be some existing protocol (e.g., ftp), or a new protocol.
While such an implementation is conceptually simple, in practice it is not feasible to
require every storage system to implement a particular transfer protocol since some
storage systems cannot be modified (e.g., commercial HTTP servers). Further, it is a
significant research effort to define a perfect storage to storage transfer protocol.

2. One storage system can perform the transfer using the SC-API data access interface
of the other storage system. The storage system performing the transfer will use
standard SC-API functions (open, read, write, close) to read from or write to the other
storage system. Advantages of this approach include the use of standard protocols and
APIs and support for multiple protocols.

We believe that an SC-API implementation should adopt the second of these two
options.

3.4 Flush Operations

We need to add a section here specifying the types of flush operations that we support
(e.g., flush to the network, flush to the remote storage system). We will also specify what
errors are guaranteed not to occur after a flush operation completes.

We also need to add a corresponding high level description in Section 2.

3.5 Manipulating Attribute Sets

The SC-API calls specified above all include an attribute set argument. An attribute
set contains zero or more (attribute-name, attribute-value) pairs, where attribute names
and values are strings. An attribute set is used to pass various parameters, hints and
directives used to customize the behavior of the underlying implementation and/or
storage system. For example, attributes might provide hints about how to perform a read
operation or how to set the values of storage system properties.

In this section, we define functions for creating attribute sets, for modifying the values
associated with attributes contained within an attribute set, and for deleting attributes
from an attribute set.

Note: The simple string manipulation functions described here are intended for use
only in the initial SC-API prototype. We plan a very different implementation of
attributes for the final version. For each SC-API function (open, close, read, write, etc.),

17

we will define a standard set of possible attributes. Then we will implement function
calls for manipulating each set of attributes, including init, destroy, set and get.

3.5.1 Initialize an Attribute Set

globus_result_t

grid_storage_init_attribute_set(

grid_storage_attribute_t * attribute_set)

Create a new attribute set. The attribute_set argument will be initialized to be an
empty attribute set.

Errors that can occur during the init operation are:

• GRID_STORAGE_ERROR_NULL_PARAMETER

An attempt to initialize a NULL attribute_set.

3.5.2 Copy an Attribute Set

globus_result_t

grid_storage_copy_attribute_set(

grid_storage_attribute_t * attributes,

grid_storage_attribute_t * copy)

Copy the contents of the attribute set attributes to the new attribute set copy. The
copy attribute set is assumed to be uninitialized.

3.5.3 Destroy An Attribute Set

globus_result_t

grid_storage_destroy_attribute_set(

grid_storage_attribute_t * attributes)

Destroy the attribute set attributes. All name/value pairs in the attribute set will be
removed, and the attribute set will be destroyed. Any outstanding references to attribute
values obtained via grid_storage_get_attribute are invalid, and should no longer
be used.

3.5.4 Add an Attribute

globus_result_t

grid_storage_add_attribute(

char * attribute_name,

char * attribute_value,

18

grid_storage_attribute_t * attribute_set)

Adds the attribute (attribute_name, attribute_value) to the supplied
attribute_set. The operation fails if the named attribute already exists within the
supplied attribute_set or if space for the new attribute cannot be allocated.

Errors that can occur during an add operation are:

• GRID_STORAGE_ERROR_NULL_PARAMETER

An attempt to add a NULL attribute_name, or an attempt to add the attribute
to a NULL attribute_set.

• GRID_STORAGE_ERROR_OUT_OF_MEMORY

Unable to allocate memory to store the (attribute_name, attribute_value)
pair in the attribute_set.

• GRID_STORAGE_ERROR_ALREADY_EXISTS

An attempt to add an attribute_name which is already defined in the
attribute_set.

3.5.5 Remove an Attribute from an Attribute Set

globus_result_t

grid_storage_remove_attribute(

char * attribute_name,

grid_storage_attribute_t * attribute_set)

Remove the attribute named attribute_name from the attribute set attribute_set to
attribute_value. Any references to the attribute’s value obtained from
grid_storage_get_attribute are no longer valid, and should not be referenced.

Errors that can occur during a set operation are:

• GRID_STORAGE_ERROR_NULL_PARAMETER

An attempt to remove a NULL attribute_name, or an attempt to remove the
attribute from a NULL attribute_set.

• GRID_STORAGE_ERROR_DOES_NOT_EXISTS

An attempt to remove an attribute_name which is not defined in the
attribute_set.

19

3.5.6 Set an Attribute

globus_result_t

grid_storage_set_attribute(

char * attribute_name,

char * attribute_value,

grid_storage_attribute_t * attribute_set)

Sets the value associated with the attribute named attribute_name within
attribute_set to attribute_value, or fails if no such attribute exists within the
supplied attribute set.

Errors that can occur during a set operation are:

• GRID_STORAGE_ERROR_NULL_PARAMETER

An attempt to set a NULL attribute_name, or an attempt to set the attribute in
a NULL attribute_set.

• GRID_STORAGE_ERROR_OUT_OF_MEMORY

Unable to allocate memory to store the (attribute_name, attribute_value)
pair in the attribute_set.

• GRID_STORAGE_ERROR_DOES_NOT_EXISTS

An attempt to set an attribute_name which is not defined in the
attribute_set.

3.5.7 Get an Attribute’s value

globus_result_t

grid_storage_get_attribute(

char * attribute_name,

char ** attribute_value,

grid_storage_attribute_t * attribute_set)

Retrieve the value of an attribute with name attribute_name from
attribute_set, or fails if no such attribute exists within the supplied attribute set. If
successful, the attribute_value parameter will point to a string containing the value
of the attribute. This string should not be modified or freed by the user.

Errors that can occur during a delete operation are:

• GRID_STORAGE_ERROR_NULL_PARAMETER

An attempt to delete a NULL attribute_name, or an attempt to delete the
attribute to a NULL attribute_set.

20

• GRID_STORAGE_ERROR_DOES_NOT_EXISTS

An attempt to delete an attribute_name which is not defined in the
attribute_set.

3.6 Manipulating File Instance and Storage System Properties

The functions defined here allow users or applications to set and query properties of
file instances or storage systems. We define an interface similar to the attribute interface
for our prototype implementation.

Like the attribute interface above, the specification of the property management functions
is likely to change dramatically in subsequent versions of SC-API.

We first define sets of required properties for file instances and storage systems.

Required properties for file instances include:

• type

• access mode

• owner

• modify time

• size

• reference count

Required storage system properties:

• storage device type

• device properties (e.g., for disks: sectors per track, tracks per cylinder, revolutions
per second, rotational delay between contiguous blocks, etc.)

• block size

• layout and allocation policies (e.g., striping)

• network protocols supported (e.g., MPI/IO, ftp, pftp)

• authentication scheme

Is it ok to let applications set these properties directly? Or should they only be set as side
effects of Storage Client API calls (i.e., open, write, close)?

3.6.1 List the properties of an URL

globus_result_t

21

grid_storage_list_properties(

grid_storage_url_t * storage_url,

grid_storage_attribute_t * attributes,

char *** property_names,

char *** property_values)

Return a list of the properties of the file instance or storage system. The
property_names and property_values arrays will be initialized to a NULL-terminated
copy of the properties of the URL. The user must free the property name and property
value arrays.

